產品目錄
Product Category熱點新聞
hot news液力耦合器
在電機軸和負載軸之間加入葉輪,調節葉輪之間液體(一般為油)的壓力,達到調節負載轉速的目的。這種調速方法實質上是轉差功率消耗型的做法,其主要缺點是隨著轉速下降效率越來越低、需要斷開電機與負載進行安裝、維護工作量大,過一段時間就需要對軸封、軸承等部件進行更換,現場一般較臟,顯得設備檔次低,屬淘汰技術。
早期對調速技術比較感興趣的廠家,或者是因為當初沒有高壓調速技術可以選擇,或者是考慮到成本的因素,對液力耦合器有一些應用。如自來水公司的水泵、電廠的鍋爐給水泵和引風機、煉鋼廠的除塵風機等。如今,一些老的設備在改造中已經逐漸被高壓變頻替換掉。
高低高型變頻器
變頻器為低壓變頻器,采用輸入降壓變壓器和輸出升壓變壓器實現與高壓電網和電機的接口,這是當時高壓變頻技術未成熟時的一種過渡技術。
由于低壓變頻器電壓低,電流卻不可能無限制的上升,限制了這種變頻器的容量。由于輸出變壓器的存在,使系統的效率降低,占地面積增大;另外,輸出變壓器在低頻時磁耦合能力減弱,使變頻器在啟動時帶載能力減弱。對電網的諧波大,如果采用12脈沖整流可以減少諧波,但是滿足不了對諧波的嚴格要求;輸出變壓器在升壓的同時,對變頻器產生dv/dt也同等放大,必須加裝濾波器才能適用于普通電機,否則會產生電暈放電、絕緣損壞的情況。如果采用特殊的變頻電機可以避免這種情況,但是就不如采用高低型的變頻器了。
高低型變頻器
變頻器為低壓變頻器,輸入側采用變壓器將高壓變為低壓,將高壓電機換掉,采用特殊的低壓電機,電機的電壓水平多種多樣,沒有統一標準。
這種做法由于采用低壓變頻器,容量也比較小,對電網側的諧波較大,可以采用12脈沖整流減少諧波,但是滿足不了對諧波的嚴格要求。在變頻器出現故障時,電機不能投入到工頻電網運行,在有些不能停機的場合應用會有問題。另外,電機和電纜都要更換,工程量比較大。
串級調速變頻器
將異步電機部分轉子能量回饋至電網,從而改變轉子滑差實現調速,這種調速方式采用可控硅技術,需要使用繞線式異步電動機,而如今工業現場幾乎都采用鼠籠式異步電動機,更換電機非常麻煩。這種調速方式的調速范圍一般在70%-95%左右,調速范圍窄。可控硅技術容易造成對電網的諧波污染;隨著轉速的降低,電網側功率因數也變低,需要采取措施補償。其優點是變頻部分容量較小,比其他高壓交流變頻調速技術成本稍低。
這種調速方式有一種變化形式,即內反饋調速系統,省卻了逆變部分的變壓器,將反饋繞組直接做在定子繞組里,這種做法要更換電機,其他方面的性能與串級調速接近。
串級調速電機受轉子滑環的影響,不能做到很大功率,滑環維護工作量也大,屬于七八十年代的落后技術,工業應用已經越來越少。
電流源型直接高壓變頻器
這種變頻器,輸入側采用可控硅進行整流,采用電感儲能,逆變側用SGCT作為開關元件,為傳統的兩電平結構。由于器件的耐壓水平有限,必須采用多個器件串聯。器件串聯是一種非常復雜的工程應用技術,理論上說可靠性很低,但有的公司可以做到產品化的地步。由于輸出側只有兩個電平,電機承受的dv/dt較大,必須采用輸出濾波器。電網側的多脈沖整流器為可選件,用戶需要針對自己的工廠情況提出要求。這種變頻器的主要優點是不需要外加電路就可以將負載的慣性能量回饋到電網。
電流源型變頻器的主要缺點是電網側功率因數低,諧波大,而且隨著工況的變化而變,不好補償。
功率模塊串聯多電平變頻器
這種變頻器采用低壓變頻器串聯的方式實現高壓,是電壓源型變頻器。它的輸入側采用移相降壓型變壓器,實現18脈沖以上的整流方式,滿足上對電網諧波的嚴格的要求。在帶負載時,電網側功率因數可達到95%以上。在輸出側采用多級PWM技術,dv/dt小,諧波少,滿足普通異步電機的需要。可根據負載的需要設計變頻器的輸出電壓,是解決6KV、10KV電機調速的較好辦法。啊功率電路采用標準模塊化設計,更換簡單,所用器件在國內采購也比較容易。
這種變頻器采用低壓IGBT作為逆變元件,與采用高壓IGBT的三電平變頻器相比,功率元件數目較多,但技術上較成熟。與采用高壓IGCT的三電平變頻器相比,功率元件數目較多,但總元件數目卻較少,因為IGCT需要非常復雜的輔助關斷電路。
根據實際而定方式:電機容量大小與電源容量且1000KW以下的可直接啟動,這時的沖擊電流是額定值的3-6倍.為了防止沖擊電流過大,對于大電機必須考慮減少啟動電流的啟動方式:有串電抗啟動,變頻啟動,液力偶合器啟動等多種方式.有復雜有簡單,價錢差異很大. 由于電壓高,電流沖擊大,電機制造必須滿足過電壓的要求,絕緣等級要求較高。